數(shù)學(xué)它是極其具有深度和難度的一門重要學(xué)科,對于我們的現(xiàn)實(shí)生活有極其這樣的作用。數(shù)學(xué)知識點(diǎn)的內(nèi)容是非常多的,各式各樣的幾何公式最令人難以忘懷。下面,大家就跟隨小編的腳步一起來看一看下面這些初中數(shù)學(xué)的所有公式吧。
一.初中數(shù)學(xué)一次函數(shù)公式
定義與定義式:自變量x和因變量y有如下關(guān)系:y=kx+b則此時稱y是x的一次函數(shù)。特別地,當(dāng)b=0時,y是x的正比例函數(shù)。即:y=kx (k為常數(shù),k≠0)一次函數(shù)的性質(zhì):y的變化值與對應(yīng)的x的變化值成正比例,比值為k 即y=kx+b (k為任意不為零的實(shí)數(shù) b取任何實(shí)數(shù))當(dāng)x=0時,b為函數(shù)在y軸上的截距。
一次函數(shù)的圖像及性質(zhì)作法與圖形:通過如下3個步驟列表;
描點(diǎn);連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與x軸和y軸的交點(diǎn))
性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)P(x,y),都滿足等式:y=kx+b。一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與x軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過原點(diǎn)。
3.k,b與函數(shù)圖像所在象限:當(dāng)k>0時,直線必通過一、三象限,y隨x的增大而增大;
當(dāng)k<0時,直線必通過二、四象限,y隨x的增大而減小。
當(dāng)b>0時,直線必通過一、二象限;當(dāng)b=0時,直線通過原點(diǎn)當(dāng)b<0時,直線必通過三、四象限。
二.初中數(shù)學(xué)因式分解公式
1.因式分解公式
公式:a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ca)平方差公式:a平方-b平方=(a+b)(a-b)完全平方和公式: (a+b)平方=a平方+2ab+b平方完全平方差公式: (a-b)平方=a平方-2ab+b平方兩根式: ax^2+bx+c=a[x-(-b+√(b^2-4ac))/2a][x-(-b-√(b^2-4ac))/2a]兩根式立方和公式: a^3+b^3=(a+b)(a^2-ab+b^2)立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2)完全立方公式: a^3±3a^2b+3ab^2±b^3=(a±b)^3.
2.圓與弧公式
正n邊形的每個內(nèi)角都等于(n-2)×180°/n
弧長計算公式:L=n兀R/180
扇形面積公式:S扇形=n兀R^2/360=LR/2
內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)
①兩圓外離d>R+r②兩圓外切d=R+r③兩圓相交R-r<d<R+r(R>r)④兩圓內(nèi)切d=R-r(R>r)⑤兩圓內(nèi)含d<R-r(R>r)
定理相交兩圓的連心線垂直平分兩圓的公共弦
定理把圓分成n(n≥3):⑴依次連結(jié)各分點(diǎn)所得的多邊形是這個圓的內(nèi)接正n邊形⑵經(jīng)過各分點(diǎn)作圓的切線,以相鄰切線的交點(diǎn)為頂點(diǎn)的多邊形是這個圓的外切正n邊形
定理任何正多邊形都有一個外接圓和一個內(nèi)切圓,這兩個圓是同心圓
如果在一個頂點(diǎn)周圍有k個正n邊形的角,由于這些角的和應(yīng)為360°,因此k×(n-2)180°/n=360°化為(n-2)(k-2)=4
弧長計算公式:L=n兀R/180
扇形面積公式:S扇形=n兀R^2/360=LR/2146內(nèi)公切線長=d-(R-r)外公切線長=d-(R+r)
三.初中數(shù)學(xué)等差數(shù)列公式
1.某些數(shù)列前n項和
1+2+3+4+5+6+7+8+9+…+n=n(n+1)/21+3+5+7+9+11+13+15+…+(2n-1)=n2
2+4+6+8+10+12+14+…+(2n)=n(n+1)12+22+32+42+52+62+72+82+…+n2=n(n+1)(2n+1)/6
13+23+33+43+53+63+…n3=n2(n+1)2/41*2+2*3+3*4+4*5+5*6+6*7+…+n(n+1)=n(n+1)(n+2)/3
2.一元二次方程的解
-b+√(b2-4ac)/2a -b-√(b2-4ac)/2a
根與系數(shù)的關(guān)系 X1+X2=-b/a X1*X2=c/a 注:韋達(dá)定理
判別式
b2-4ac=0 注:方程有兩個相等的實(shí)根
b2-4ac>0 注:方程有兩個不等的實(shí)根
b2-4ac<0 注:方程沒有實(shí)根,有共軛復(fù)數(shù)根
以上,就是小編精心為大家準(zhǔn)備的初中數(shù)學(xué)的公式哦,大家看到這里,是不是非常的滿意呢?在大家的數(shù)學(xué)學(xué)習(xí)過程中,公式的記憶是非常重要的,但是,大家一定要了解公式是怎么演算出來的,這樣,大家才會更加容易理解哦。